Constitutive internalization of cystic fibrosis transmembrane conductance regulator occurs via clathrin-dependent endocytosis and is regulated by protein phosphorylation.

نویسندگان

  • G L Lukacs
  • G Segal
  • N Kartner
  • S Grinstein
  • F Zhang
چکیده

Although the cystic fibrosis transmembrane conductance regulator (CFTR) is primarily implicated in the regulation of plasma-membrane chloride permeability, immunolocalization and functional studies indicate the presence of CFTR in the endosomal compartment. The mechanism of CFTR delivery from the cell surface to endosomes is not understood. To delineate the internalization pathway, both the rate and extent of CFTR accumulation in endosomes were monitored in stably transfected Chinese hamster ovary (CHO) cells. The role of clathrin-dependent endocytosis was assessed in cells exposed to hypertonic medium, potassium depletion or intracellular acid-load. These treatments inhibited clathrin-dependent endocytosis by >90%, as verified by measurements of 125I-transferrin uptake. Functional association of CFTR with newly formed endosomes was determined by an endosomal pH dissipation protocol [Lukacs, Chang, Kartner, Rotstein, Riordan and Grinstein (1992) J. Biol. Chem. 267, 14568-14572]. As a second approach, endocytosis of CFTR was determined after cell-surface biotinylation with the cleavable sulphosuccinimidyl-2-(biotinamido)ethyl-1,3-dithio- propionate. Both the biochemical and the functional assays indicated that arresting the formation of clathrin-coated vesicles inhibited the retrieval of the CFTR from the plasma membrane to endosomes. An overall arrest of membrane traffic cannot account for the inhibition of CFTR internalization, since the fluid-phase endocytosis was not effected by the treatments used. Thus the efficient, constitutive internalization of surface CFTR (5% per min) occurs, predominantly by clathrin-dependent endocytosis. Stimulation of protein phosphorylation by cAMP-dependent protein kinase A and by protein kinase C decreased the rate of internalization of cell-surface biotinylated CFTR, and contributed to a substantial diminution of the internal CFTR pool compared with that of unstimulated cells. These results suggest that the rate of CFTR internalization may participate in the determination of the CFTR channel density, and consequently, of the cAMP-stimulated chloride conductance of the plasma membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rme-1 regulates the recycling of the cystic fibrosis transmembrane conductance regulator.

Endocytic motifs in the carboxyl terminus of cystic fibrosis transmembrane conductance regulator (CFTR) direct internalization from the plasma membrane by clathrin-mediated endocytosis. However, the fate of such internalized CFTR has remained unknown. Internalized membrane proteins can be either targeted for degradation or recycled back to the plasma membrane. Using cell surface biotinylation a...

متن کامل

Mu 2 binding directs the cystic fibrosis transmembrane conductance regulator to the clathrin-mediated endocytic pathway.

The cystic fibrosis transmembrane conductance regulator (CFTR) contains a conserved tyrosine-based internalization motif, (1424)YDSI, which interacts with the endocytic clathrin adaptor complex, AP-2, and is required for its efficient endocytosis. Although direct interactions between several endocytic sequences and the medium chain and endocytic clathrin adaptor complexes have been shown by pro...

متن کامل

Multiple endocytic signals in the C-terminal tail of the cystic fibrosis transmembrane conductance regulator.

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-dependent protein kinase (PKA)-activated chloride channel that is localized to the plasma membrane and endosomal compartment. Endosomal targeting of CFTR is attributed to the Tyr(1424)-based internalization signal, identified in the C-terminal tail of the channel. Mutation of the Tyr(1424) residue could partly inhibit the ...

متن کامل

Molecular screening of R117H mutation in non caucasian cystic fibrosis patients in the north of Iran

Cystic fibrosis is an autosomal recessive disease caused by a wide spectrum of mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator protein. These mutations that correlate with different phenotypes, vary in their frequency and distribution in different populations. In this study missense mutation R117H that associated with the different clinical symptoms wa...

متن کامل

Analysis of c.3369+213TA[7-56] and D7S523 microsatellites linked to Cystic Fibrosis Transmembrane Regulator.

  Cystic fibrosis (CF) is a life-limiting autosomal recessive disorder affecting principally respiratory and digestive system . It is caused by cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation. The aim of this study was to determine the extent of repeat numbers and the degree of heterozygosity for c.3499+200TA(7_56) and D7S523 located in intron 17b and 1 cM proximal to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 328 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1997